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MEMORANDUM 2-13-59A

THE SYNTHESIS OF OPTIMUM HOMING MISSILE GUIDANCE
SYSTEMS WITH STATISTICAL INPUTS

By Elwood C. Stewart and Gerald L. Smith

SUMMARY

An analytical approach is presented which is applicable to the
optimization of homing navigation guidance systems which are forced to
operate in the presence of radar noise. The two primary objectives are
to establish theoretical minimum miss distance performance and a method
of synthesizing the optimum control system. The factors considered are:
(1) target evasive maneuver, (2) radar glint noise, (3) missile maneuver-
ability, and (4) the inherent time-~varying character of the kinematics.

Two aspects of the problem are considered. In the first, consider-
ation is given only to minimization of the miss distance. The solution
given cannot be achieved in practice because the required accelerations
are too large. In the second, results are extended to the practical
case where the limited acceleration capabilities of the missile are con-
sidered by placing a realistic restriction on the mean-sguare acceleration
so that system operation is confined to the linear range.

Although the exact analytical solution of the latter problem does
not appear feasible, approximate solutions utilizing time-varying control
systems can be found. One of these solutions - a range multiplication
type control system - is studied in detail. It is shown that the minimum
obtainable miss distance with a realistic restriction on acceleration is
close to the absolute minimum for unlimited missile maneuverability.
Furthermore, it is shown that there is an equivalence in performance
between the homing and beam-rider type guidance systems. Consideration
is given to the effect of changes in target acceleration, noise magnitude,
and missile acceleration on the minimum miss distance.

INTRODUCTION

The wide application of homing guidance principles in missile systems
Poses an important gquestion to the missile designer of what performance
can be expected of a homing missile attacking a target. Of even greater
importance is knowing how to synthesize a missile control system to
achieve this optimum performance. The purpose of this report is to present
a method whereby answers to these questions can be obtained.



The factors which affect misslile system performance are soO numerous,
diverse, and often interrelated that all of them cannot be handled simul-
taneously. Nevertheless, there are certair aspects which are considered
so essential to the realization of meaningful results that they cannot be
ignored. The basic factors which it is believed must be included in the
present homing problem are: (1) target mareuvers, (2) glint noise, (3)
missile maneuverability, and (4) the inherent time-varying character of
the kinematics. There are other aspects of the problem which are not
considered; these either are not of fundamental importance to the problem
or they must be handled by independent mears. In this category are such
factors as the three-dimensional aspect of the problem and the radar blind
range of active radars. Thus the problem we wish to solve can be stated
quite simply as follows: synthesize a homing guidance system which will
produce minimum miss distance when operatirg under known conditions of
target maneuver, glint noise, missile maneuverabllity, and time-varying
kinematics.

There are two possible approaches. The usual solution of this problem
is based on a cut-and-try approach, in which different control systems are
simulated on an analog computer and parameters are varied in an attempt
to find the best performance. There are sc many possibilities to be
investigated, however, that there is little chance of finding the best of
all systems in this manner, although such studies can yield insight into
the character of the problem,

A second approach is to leave the control system unspecified at the
outset and to determine both the form and the coefficlents of the system
by a synthesis method. Such an approach itc exemplified by the pioneering
work of Wiener. Three principal assumptiors made in the Wiener theory
are: (1) the inputs can be represented by stationary random time series,
(2) the system is linear, and (3) the system is time invariant. There
are many problems which can be formulated without violating these assump-
tions, and to these problems the Wiener theory is applicable. An important
example is the beam-rider guidance problem; the optimization of such a
system has been reported on in reference 1. There are, however, many
problems which cannot be described without violating one or more of these
assumptions. In the homing problem to be considered here, previous theory
cannot be applied because the problem is ecssentially a time-varying one.
The reason is that guidance of the homing nissile is accomplished by
employing line-of-sight measurements which involve a time-varying range
between missile and target. Consequently, the purpose of this report will
be to consider the optimization of the homing system by including the time-
varying range simultaneously with the target maneuver, noise, and missile
maneuvering capability. We will be concerred with both the synthesis of
the optimum homing system and the establistment of minimum theoretical miss
distances.

The first part of the report provides the background and formulation
of the problem. The second part treats the synthesis of the optimum homing
system when the effect of practical missile maneuvering capabilities



is temporarily ignored. This step provides a natural transition to the
next section in which the finite missile maneuverability is taken into
account. Finally, the method is illustrated in the last two sections
where specific systems are derived.

IMPORTANT SYMBOLS

am acceleration of target perpendicular to reference line
Co impulse response of optimum control system
k twice the average switching rate of target acceleration, l/sec
kg aerodynamic gain, ffliifi
radian
L Laplace transform operation
N noise magnitude or zero frequency noise spectral density,
£12
radian/sec
R range between missile and target, ft
5 variable in the Laplace transform
T time at collision point, sec
YN time constant of the noise spectrum shaping filter, sec
VM missile velocity magnitude, ft/sec
VR relative velocity between missile and target in the direction

of the line of sight, ft/sec

v target velocity magnitude, ft/sec

W impulse response of optimum control system and aerodynamics
combination

M missile displacement perpendicular to reference line, ft

YN apparent target displacement from true target center due to

noise, ft
NGy target displacement perpendicular to reference line, ft
73 perturbation in missile velocity vector, radians

® control-surface deflection, radians



€ error between target and missile position, Y=Yy ft

€y component of error e due to nois=s, ft

€p component of error € due to targat maneuver, ft

Aa perturbation in apparent line of sight between missile and

target, radlans

¢ spectral density of total input siznal
2
Oy spectral density of noise displacenent YN» ———EEL————
radian/sec
. . £t2
O spectral density of target displacement Yy ———————
radian/sec
w angular frequency, radians/sec
(@) ensemble average of ( )

PROBLEM FORMULATIOXN

Geometry

It is widely accepted that the ideal atsack course is one for which
the line of sight from missile to target does not rotate. Such a course
is called constant true bearing, or CTB. This course 1s especially
desirable because it 1is the only course whici never requires lateral
acceleration of the missile greater than tha: of the target. However,
the ideal CTB course cannot be achieved in practice because of time lags
in the missile system. Furthermore, informa:ion about the target is
obscured by noise so that the real target position is never known pre-
cisely. For these reasons the best any miss.le can be expected to do is
to fly a reasonable approximation to CTB. Tius in formulating the problem
analytically, one 1s led naturally to a repr:sentation of the target and
missile maneuvers as perturbations from a CT3 course.

In the derivation of the homing system -:quations three simplifying
baslc assumptions are made which can be summirized as follows:

1. Coplanar attack.- Target and miss.le maneuvers are assumed to
occur entirely in a plane, which will be tiken as the horizontal plane
for simplicity. An alternative assumption - which amounts to the same
thing - is that the pitch and yaw control —:hannels operate without
mutual interaction, so that the components of motion in one plane can
be considered independently of motions in he other plane. One or
the other of these assumptions can be expe:ted to apply reasonably
well to a large number of realistic cases.



2. Constant missile and target velocity magnitudes Vy and V.-
This assumption is usually a reasonable approximation to most real cases
where velocities are not constant. This is because, as will be shown,
only the last few seconds of flight need be considered in determination
of miss distance, during which time velocity magnitude changes are
usually small,

3. ©8mall angle approximation.~- The perturbations of the line-of-
sight angle and missile and target heading angles are assumed to be
small enough to permit linearization of the geometry. The validity of
this assumption will be examined in detail later in the report.

If the target does not maneuver, the second of these assumptions
reduces the CTB course to a straight line. Since the target flight path
is also a straight line under these circumstances, the entire attack
situation can then be represented by a simple coplanar diagram of straight
lines, as indicated in figure 1. This diagram makes a convenient reference
for the homing problem equations. The line of sight is designated as the
x axis, with the origin at the missile, and the entire reference system
moves with constant velocity magnitude, VM' Target and missile maneuvers
and noise are then regarded as small perturbations from this coordinate
system, occurring entirely within the plane of the straight-line CTB
diagram. The complete geometry can thus be represented as in figure 1,
where it can be seen that the angle between the apparent and reference
lines of sight is

-1 Jp=IMtIN
R

Since range 1s approximately equal to X=Xy and since Ay 1is assumed
small, this equation is simplified to

Ng = tan (12)

Yo=yMt¥N
= —H (1b)
XKp=XM
Also, in figure 1 it can be seen that
x7=xy = =Vpeos (go+eg) ~Vmeos (7o+74) (2a)

which can be simplified because of the assumption of small perturbations
to

XT—}.{M = "VTCOS CpO—VMCOé) 70 = -VR (Eb)
Likewise

¢ = &T'&M = VTsin(@O+@d)—VMsin(70+7d) (3a)



which becomes (because Vpsin Go=VMsin 7o = C)

€ = 7gVpCos Go-7aVMCOE 7o (3b)

From equations (1b), (2b), and (3b), it is pcssible to construct a block
diagram of the homing kinematics as shown in figure 2. Note that the
quantity xp-xy is replaced by

O
—fVRdt = -VRt4R, = VR(% - t> = VR(T-t)

where Ry 1s defined as the range at t = 0 when the problem is
considered to begin, and T-t dis the time tc go, or time remaining until
collision.

Control System and Aerodynamics

The portion of the block diagram of figire 2 which closes the kine-
matics loop described sbove consists of the control system and serodynamics,
the function of which is to develop a 74 1r response to the input angle
Ng+ It should be noted that the exact form ¢f control is left unspecified
since it is to be determined by the optimization procedure. However, two
conditions are imposed in this study: (1) ptysicel realizability of the
over-all system, and (2) limited output capakility (i.e., limited control
deflection) of the control system. There are many other conditions which
could be imposed but need not be considered lere because they are of minor
importance. One of these conditions is the Ylind range of the radar, which
although an inherent characteristic of all active radars, is assumed to be
zero in this study; that is, it is assumed tlat the seeker is able to
detect the target and provide guidance infornation all the way to the end
of flight. The reasonableness of this assumption is discussed in later
sections.

Idealized missile aerodynamics are assuwed in this report for mathe-
matical convenience; that 1s, the transfer finction relating control motion
5 to the missile displacement perpendicular to the veloclty vector V
is taken to be simply k,/s®, where k, is the aerodynamic gain and lysz
represents two kinematic integrations. This assumption 1s considered
reasonable because specific aerodynamics are expected to have little effect
on the over-all missile performance.l Furthermore, generality is not
compromised since arbitrary aerodynamic factcrs can be included if desired.
It will be noted that with ideal aerodynamic:s, limited control surface
deflections are equivalent to limited acceleiation capabilities, and either
concept can be used to describe the limited capabilities of the missile.

1Reference 2 shows that if a control sy:stem is optimized for a specific
set of aerodynamic factors, the final effect on miss distance is small
provided that the aerodynamic factors are recsonably fast (i.e., reasonably
high in undamped natural frequencies). Althcugh reference 2 is applicable
to only the beam-rider guidance system, it c:n be seen from later portions
of this report that the same conclusion will apply to the homing problem.




Target Evasive Maneuver and Noise Inputs

Since the design of a system depends on the characteristics of the
inputs to be encountered, it is necessary at this point to discuss these
characteristics. PFor the homing study, target maneuvers and glint noise
are the only inputs considered, and it is assumed that they are uncorre-
lated. They can therefore be shown as independent inputs in figure 2 and
can be defined independently. The properties of the inputs used in this
report are the same as those employed in the beam-rider study of refer-
ence 1 and are reviewed in the following paragraphs.

The glint noise, yy, can be described best in statistical terms.
Many experimental determinations of glint noise indicate that, typically,
it has a Gaussian distribution and a spectral density® of the form

o = (4)
TN w41
As in reference 1, a value of N = 15 feet squared per radian per second
and Ty = 0.0265 second is used for the example employed later in the
report. Such values are typical of a large bomber target.

The type of target maneuver upon which to base the system design
can never be determined with certainty, since the target quite obviously
may maneuver in many different ways. The best evasive maneuver would
result 1f the target pilot possessed unlimited knowledge about the
attacking missile and could therefore always maneuver in the optimum
manner to avoid being hit. Such a concept is possibly somewhat unreason-
able because of the difficulty in obtaining and properly utilizing all the
information necessary to execute such a maneuver. A more reasonable
assumption is that the target pilot knows only that he is being fired at
and therefore executes some evasive maneuver. The concept which is used
in this report is to picture the target evasive maneuver as a stationary
random process in which the target turns at its maximum possible rate
alternately in opposite directions without regard to what the attacking
missile is doing. The length of time between switches is assumed to be
randomly distributed according to a Poisson distribution (1/1)exp(-1/7),
where 1 represents the length of the interval and 1 the average interval
length. It can be shown (ref. 3) that the spectral density of the target

displacement is then
2

k
. o (5)
rw® (k%)
where the gquantity ap represents the magnitude of acceleration perpen-
dicular to the line of sight, and k is twice the average switching rate,
or k =2/7. For the example situation to be used later in the report,
2The definition of spectral density used here is the same as in refer-
ence 1, except that the ensemblem?verage 62 1is used instead of the time

average 62, that is, 62(%) =\/p o (w)dw.

~00
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the target is assumed to maneuver with *1lg acceleration with an average
period of 5 seconds, vwhich gives ap = 32.2 ft/sec® and k = 0.4 switch/sec.

There are several important comments to be made concerning this type
of input. First of all, a statistical description of the target maneuver
process is a desirable one, since target motions cannot be described as
unique functions of time. Secondly it is cl:zar that the maneuver is a
severe one and puts the system to a good test; 1t is often found that
systens designed according to theories based on either no maneuver or very
weak maneuvers have unacceptably poor perfornance in the presence of a
more severe maneuver. Another consideration not generally realized is
that the stationary process described above ls also applicable to certain
important nonstationary processes. In any rzal problem it is apparent that
the inputs are distinctly nonstationary. For instance, they are nonstation-
ary because the target motion and noise do not exist for an infinitely
long time into the past. However, the nonstationary character of the input
is due to the strict mathematical definition., It is clear that in the
practical case it makes little difference to the missile so far as miss
distance is concerned, whether a process is :xonsidered to persist over an
infinite or a finite period so long as the process begins at a time before
the end of the attack by an amount egual to >r greater than the system
response time. (Of course, the process may Sserminate any time after the
attack is over without affecting the results.) In other words, an infinite
period is, for practical purposes, simply on= which is longer than the
systen response time. Thus when the system response times are short,
results obtained by means of the stationary input apply directly to an
important class of nonstationary problems. [he results presented herein
are in this category.

Optimization Criterinn

Mean-square miss distance is chosen her: as the criterion for the
evaluation and optimization of system perfornance. Although a probability
of kill criterion would be more desirable to use, this concept is unwieldy
in application, and is closely related to mein-square miss distance anyway.

It should be noted that miss distance as used here is defined in terms
of the radar center of the target and the ceiter of gravity of the missile;
that is, miss distance is the closest approah of the missile center of
gravity to the center of the target. Since :here is only one miss distance
associated with any one attack, mean-square niss distance implies a large
(theoretically infinite) number of attacks azainst targets with identical
statistical maneuver and noise properties.



SYNTHESIS OF THE OPLIMUM HOMING SYSTEM

General Considerations

In the optimization problem to be considered in this report there are
certain concepts which are so intimately associated with the solution that
it will be necessary to discuss these concepts in the following paragraphs.

Mean-sguare output.- For systems characterized by linear constant-
coefficient differential equations the relationship between the output
and gilven analytical or statistical inputs is well known and particularly
simple. For time-varying systems, however, the relationship is similar
but not so simple. The general linear time-varying system may be convern-
iently described (see sketch) in terms of its time-varying impulse response

64 (t) E(t, b, )p—— 0 (t)

of

h(t,tl), which is the response at time t due to an impulse put in at
time t,; that is, if Qi(t) is an impulse uo(t—tl) then the output
65(t) is defined as the impulse response h(t,t;). This response function
can be used to find the output due to any arbitrary input. However, when
the input is a random process, the output can be described only by its
statistical properties. One of the most useful properties is the mean-
sguare ensemble average. For the particular case when the input 81 has
a constant spectral density of unity magnitude, the mean-square ensemble
output 8o=(t) is given by the equation®

e t

02 (8) = 2x [ ¥(t,m)an (6)

-0

S8The form of this equation is a consequence of the definition given

in footnote 2. That is the relation 6:2(t) = ;1 (0) = fw 041 (w)dw (for
L ool

a stationary process) implies the transform pair .. (r) = fm ®~-(w)eiu¢du
"id ) o “i1
1 -1wT .
and ¢34 (w) = = [ o35(1)e dt. Thus for unit spectral density input,
=00

@31 (7) = 2mug(T). It then follows from the relation between input and
output correlation functions

t t!
Poolt,t!) = [w [m h(t,50)h(t" 51" ) gy (by -ty )dty 'dty

that for uwnit spectrazl density input,

PR t
8,7(t) = quo(t,t) = 2x f_oohE(t,tl)dtl
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In this report the mean-square values of several different gquantities will
be of interest. By appropriate interpretations of the quantities Go(t)
and h(t,t;) each of these can be obtained from equation (6).

The preceding discussion is applicable only when the input is white
noise. However, spectrums of physical phenonena are never flat. Since
we are interested in mean-square values, which depend only on the input
spectrum, it follows that if the input is replaced by another random
function with an identical spectral density, the mean-square output will
be the same. Such a random function can be readily generated by simply
passing white noise through an appropriate shaping filter. By this means
an equivalent system can be derived which has the same mean-square output
as the actual system and furthermore has a wiite noise input. The output
can now be obtained from equation (6) if h(3,t1) is defined as the impulse
response of the equivalent system, which is a1 series combilnation of the
appropriate spectrum-shaping filter and the actual system.

Adjoint theory.- To evaluate equation (A) it is necessary to obtain
the impulse response h(t,t;). This is usually done by solving the differ-
ential equation describing the system being studied. For linear time-
invariant systems this can be done relatively simply by solving the system
differential equation by classical methods; 1owever, for time-varying
systems analytical solutions are not generally possible. Nevertheless,
solutions can be obtained by the use of an alalog computer. The system
is sirulated on the computer, an impulse ug(t-ty) is introduced at time
t,, and the computer generates the system response h(t,t,) for that
particular value of t;. To obtain the syst:@m response for all t; it
is apparent that a great many runs are required. In this way there results
a family of curves h(t,ty) plotted against t for various values of %;.
However, to evaluate equation (6), curves of h(t,t;) plotted agalnst 1y
for various values of % are required. Suci curves must be obTalned by
cross-plotting the computer runs, which is o>viously a somewhat unwieldy
procedure.

The difficulties apparent in this methol can be largely overcome by
utilizing adjoint theory. This is because tae adjoint system can be used
to generate h(t,t1) as a function of %, for a particular value of *t.
Thus the entire operation indicated in equation (6), that is, generation
of h(t,tl), squaring, and integrating, can oe performed in a single
computer run.

A description of the adjoint theory is given in reference 4 and need
not be repeated here. However, to fully undzsrstand the homing problem it
will be necessary to review certain essentials of the theory. To begin
with, i1t must be pointed out that the theory is applicable only to linear
systems, either time-varying or non-time-varying. Within this restriction
any system may be replaced by its corresponcing adjoint system. There are
two ways in which the adjoint system may be constructed. In one method
the original differential equation is transformed by the application of
simple rules into the corresponding adjoint differential eguation from
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which the adjoint system block diagram can be constructed. The other
method, which 1s used in this report, is to construct the adjoint system
block diagram directly from the original block diagram. Whichever method
is used, the effect of the transformation is, in a sense, a reversal of the
time scale of the problem. In the real time problem we are concerned with
a particular time interval from t = 0 when the problem begins to t =T
when the problem may be considered to end because 1t has no useful meaning
beyond this time. For example, in the homing problem t =0 might be
defined as the time of launching and t = T as the time when the missile
reaches the target. In the adjoint, the time interval 1s identical but

the time scale is viewed in the reverse sense. This is readily seen from
the definition of adjoint time, which is 71 = T-t. Thus, the beginning
and end of the interval in adjoint time, T = O and T = T, correspond respec-
tively to the end and beginning of the interval in real time, € = T and

t = 0.

The rules for deriving the adjoint circuit can be summarized as
follows:

1. The input and output of each box are interchanged and the
direction of signal flow reversed.

2. The input and output of the over-all system are interchanged.
That is, whereas the impulse is introduced into the original block
diagram at point A and the output obtained at point B, in the adjoint
circuit the impulse is applied at point B and the output is obtained at
point A.

3. A time-varying element in the real time problem, which is
represented by F(t) during the interval of interest, is replaced in
the adjoint problem by f£(t). This function is made to be simply
F(T-1). In other words f(r) is the same as F(t) but runs backward
starting at F(T) and ending at F(0).

In terms of the adjoint circuit and adjoint time, equation (6) for
the mean-square output can now be rewritten as follows

PREYIEN b2 °°
85" (t5) :f h=(ts,ty)dty =[ h2(t5,T-T)dT

ta

-0

:foohg(tg,T—’r)dT (7)

0O

where the h® has been redefined to include the 2x factor. Thus h

now represents the impulse response of the series combination of the
spectrum-shaping filter, the actual system, and a JE; factor. Equa-

tion (7) may now be rewritten in terms of the time 7, at which the
impulse is introduced into the adjoint circuit. In view of the reciprocity
which exists between the real-time and adjoint-time systems it is seen



that 7, 1s simply T-tp. Thus by eliminating t, we have

A 00
05 (t2) :f h2(T=1,,T-7)dT
(e}

=foch2("r,1'l)d~r (8)

0]

where h(T,Tl) 1s the response of the adjoint system to an impulse intro-
duced at 711 plotted as a function of T (tut is not of the same functional
form as h{T-71,,T-7)). It should be noted that in this latter form the

to on the left side of (8) is contained implicitly in the 71 on the

right side. Also, the lower limit has been replaced by zero in equation (8),
since the lmpulse response i1s zero for T < T-ts. This limit corresponds

to the obvious fact that in the original system there can be no response

at bty due to an input which cccurs after ts.

The infinite upper limit on the integral in eguation (8) needs some
further explanation. ©5Since we are interested only in the time interval
T = T-tp to T, corresponding to the real time interval t =0 to *to,
1t 1is apparent that the integration has no msaning beyond T = T. However,
if the impulse response has died out by the time 1 reaches the value T,
then the <« upper limit is valid. In terms of the physical problem this
is eyulvalent to the fact, mentioned in the problem formulation, that
inputs occurring before the time of interest, ts, by an amount eyual to
or greater than the missile response time caa have no effect on the mean-
square output at t-5. For this reason it is implied in eqguation (b) that
the initial time to go T must be at least as great as the impulse response
time of the system. This is a reasonable assumption in most cases, TFor
instance, 1t will be seen in the typical examnple introduced later that
the impulse response does not extend beyond 2 few seconds.

Solution With No Control Motioa Restriction

In this section will be considered the solution for the optimum homing
control system which satisfies only the mininum miss-distance criterion.
No attempt is made to account for saturation effects due to limits on the
control motion. For this reason the solutio1 is not expected to be of
practical interest. However, the solution of this simpler problem can be
used to lead to the solution of the more comolex problem in which the
finite missile maneuverability is considered.

AdJoint block diagram.- The first step in the solution is to derive
the adjoint block diagram. For this purpose it will be desirable to redraw
figure 2 in a more sultable form as given by figure 2. It should be noted
that in view of the discussion of the previois section the inputs Yy and yp
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have been replaced by filtered white noise. The spectrum-shaping filters
shown are readily derived from the respective spectral densities of

yy end yp as given in equations (4) and (5). So that the block diagram
will be consistent with equation (8) the input to the block diagram is
shown as white noise of unit spectral density which is then multiplied
by «f27. The quantities (yN), (yT), and (€) appearing in figure 3 are
shown in parentheses because they are not the same as the true gquantities
except in terms of their mean-square values. All of the system except for
the range-varying kinematic gain is lumped together and identified by its
impulse response Ww(T,t), or equivalently its transform W(s,t), which is
considered a function of t din order to include time-varying control
systems. The transfer function W(s,t) thus contains the kinematic gains
l/VR and Vy cos y,, the idealized aerodynamics, and the control system.
It is now possible to construct the adjoint block diagram corresponding
to figure 3 by means of the rules given previously; the result is given
in figure 4. Several points should be noted concerning this figure. First,
the asterisk superscript denotes that W*(s,t) is the adjoint of W(s,t).
Second, the impulse input required to obtain the system impulse response
is shown introduced at the point corresponding to the error, € = Yp=YMs
in the original system. Third, corresponding to the two inputs which
appear in the original system, there are two outputs which appear in the
adjoint, one related to the error due to noise and the other to the error
due to target maneuver.

Adjoint equations.- It is now desired to write the expression for the

mean-sguare error €2 in terms of the unknown control system w(T,g).
From figure L it can be seen that the error is composed of two rarts, one
due to noise and the other due to target maneuver. By utilizing equa-
tion (8) the mean-square value of the components ey and ep2 can be
written in terms of the corresponding impulse responses Eyr and Epr
shown in figure 4. Since the noise and target maneuvers are uncorrelated,
the total mean-square error is given by

c2(ta) f [Eys2(7,71) + Bre?(r,m1)lar (9)
(@]

In order to find the optimum control system, it is now necessary to express
equation (9) in terms of the unknown control system w(t,t). It is shown
in appendix A that the mean-square error €2 can be related to the control
system w(T,g) by the following two expressions:

() - bf w({ I mh(T-x,n)hN(T,T-x)dx}z .
(o]

oo[uo(’r—x-’rl)—h("r-x,"rl)]hT(T,T—X)d.X ) ar (10)
{/ })
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T
n(r,m) = ) o }.f w(r,e)h(E,m)dE (11)
T T

Tn equation (10) it is seen that the mean-sjuare error consists of two
parts, the first due to noise and the seconi due to target maneuver. The
known factors in this equation are hy and ap, the impulse responses of
the spectrum-shaping filters multiplied by J?E} and uy, the unit impulse.
The only unknown 1is h(T,T,) which can be interpreted as the impulse
response of the adjoint homing system. The second eguation, (ll), is an
integral equation in which the response h(t,71) is related to the control
system w(T,t). Thus it is clear that by the pair of equations (10) and
(11) the mean-square error is expressed in terms of the unknown control
system w(T,t) by means of the intermediate response h(T,71).

Solution.~ It is now necessary to determine the optimum control
system wiT,g) which will minimize the mean-square error. No convenient
means is known for treating such general time-varying expressions as
equations (10) and (11). However, rather than determining the minimum
error for all times, we may greatly simplify the equations by confining
our attention to the error at zero range, cr t = T, that is, the miss
distance. (In fig. L this_corresponds to making the input wug(T), s0
that the output becomes €2(T).) In this case the equations can vpe solved
as shown in appendix A. Since we have confined our interest to one instant
of time, the time-varying nature of h{t,7,) is arbitrary. Consequently,
there are a great many time-varying control systems w(T,T1) which are
opbtimum. As discussed in appendix A it will only be of interest here
to examine the simplest of such systems, tre constant-coefficient control
system. The solution for this case is

Edg o(f)
Wb(s) = - _E:EST;S' (12)
where
w) = R * dwt 7 QT(a)eiui
Ho(w) 2n¢+(w)[ e L e do dt (13)

Note that ¢ = @T + Oy = ¢to~ where the + superscript refers to the upper
half-plane poles and zeroes while the - rei'ers to the lower half-plane
poles and zeroes.

For the example case to be considered in this report, for which the
numerical values describing the input spectra are given in the problem
formulation section, the optimum control s;stem wo(s) is found to be
a rational function of the general form



15

as53+a-524a,s+1
D 3 2 1 (lLP)

)
) s{b45%*+b353+bs2+b, s+1)

Numerical evaluation gives

Wy(s) = 2 (3.58s+1) (0.37352+0.8865+1) (15)
5(2.508+1) (0.49052+0.727s+1) (0.687s+1)

An Important conclusion can now be drawn regarding the relative
rerformance of homing and beam-rider systems. This conclusion is that
the two systems have precisely the same opbimum miss distance performance
for any given attack situation. The reason for this will be indicated
in the following discussion.

It will be recalled that the optimization of the beam-rider system
as treated in reference 5 was based on minimizing the time average of
the squared error. However, followlng the theory in the present report
it would be equally possible tc minimize the mean-square ensemble error
of miss distance. The result would be to yield an expression for Ho(w)
which 1s identical in form to that given in equation (13) for the homing
system. (It should not be inferred that the control systems are there-
fore of the same form, however, because of the basic difference between
the kinematics of homing and beam-rider guidance.) It is clear that the
numerical values of these two Hgy's will be identical in any given attack
situation only if the expressions for &p and @y are the same for both
systems. Under these circumstances the mean-square ensemble miss distances
will be identical. That the &'s are the same is readily seen for the
tail-chase situation, but it is not immediately apparent for other attack
aspects. Although it was not intended in the beam-rider study to deal with
the general case, it can be shown that under certain circumstances the
beam-rider problem is amenable to generalization of the same type employed
in the homing problem. One such circumstance is when the tracking radar
is sufficiently far from the target that rotations of the line of sight are
small. Another i1s when the tracking radar is sufficiently far from the
target that rotations of the line of sight are small. In either case, the
target motions and noise may be regarded as perturbations about a reference
line which moves at constant velocity without rotation. This is precisely
the same situation assumed for the homing system geometry so that inputs
and therefore miss distances of the two systems are identical. In other
words, in any given attack situation the homing and beam-rider systems
are actually solving the same problem, and it should not be surprising
to find that they have the same optimum performance. A somewhat different
situation develops when missile acceleration limiting is considered, but
this question will be deferred to the next section.
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The performance of the homing system can now be shown. Note that for
the beam-rider system the error € 1s both stationary and ergodic. Thus,
as a consequence of the ensemble average equivalence Just shown between
the unrestricted homing and beam-~rider problems, 1t is possible without
further calculation to utilize certain of the beam-rider results directly
in the homing problem. To illustrate, for the example attack situation
a curve of minimum obtainable miss distance versus noise magnitude for the
beam rider (taken from ref. 5) is plotted as the lowest solid curve in
figure 5; the corresponding curve for the homing system, identical to that
for the beam rider, is shown as the lower cotted curve. This curve repre-
sents the theoretical lower limit of miss distance, and is useful in making
comparisons with the performance of other homing systems.

It is interesting to compare these results with the performance which
would be obtained by disregarding noise theory in the design. As an
example, the uppermost curve in figure 5 shows the noise performence of
a system optimized for a target motion with no noise present. A comparison
of this curve with the optimum curve shows that a significant reduction in
miss distance should be possible.

Solution With Control Motion Restriction

Synthesis of the optimum control system, taking into account missile
acceleration saturation, is considered in this section. The importance of
this phase of the homing problem has been discussed previously, and can be
grapaically illustrated in this section.

Adjoint block diagram.- As a first step in the optimization procedure
for the restricted control motion case, 1t will be necessary to reconstruct
the adjoint block diagram of figure 4 in a form suitable for evaluation of
mean~-square control motion. To obtain mean-square control motion, an
impulse input must be introduced at the point in the adjoint system which
corresponds to the control motion in the real time system. Thus, the
idealized aerodynamics, kgy/s2, are separated from the remainder of the
system. This remainder is designated C*(s,t), again showing C* as a
function of time to include the possibility of a time-varying control
system. The desired adjoint block diagram is shown in figure 6. It can
be seen that mean-square miss distance can also be evaluated with this
same block diagram by merely changing the location of the input impulse.
These alternatives are both shown in figure 6. As in the unrestricted
problem, EE(T), or mean=-square miss, is obtained at the output by intro-
ducing an impulse at point A at 1 = 0. As for the control motion,
however, we are 1lnterested in not only the end point, &t = T, but all other
times t, prior to t = T as well. This quantity, 82(tz), can be
obtained at the output by introducing the impulse up[T-(T-ts)] at point
B (i.e., at 1 =T = T-ts5).
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Tmpracticability of unrestricted solution.- It is now easy to show
the difficulty with the unrestricted so%ution previously obtained. The
constant-coefficient control system W given in equation (14) is split
into aerodynamit and control system parts and inserted into the block
diagram of figure 6. Because of the form of C*(s,t), an impulse intro-
duced at point B would result in an infinite output of the homing
system adjoint. This means that infinite missile accelerations would be
called for? when this system operates in the presence of glint noise, and
serious limiting would occur. This result is also obtained from time-
varying Ws.

It can be shown that the infinite acceleration which would be
required can be readily reduced. Since the called-for acceleration
spectrum extends to somewhat higher frequencies than does the input
spectrum, a certain amount of additional filtering can be added to the
control system to result in finite accelerations without significantly
altering the miss distance performance. However, in order to reduce the
magnitude of acceleration to practical levels, so much filtering must be
added that it becomes an appreciable part of the desired system filtering.
The miss is thereby increased. The problem thus amounts to compromising
between increasing the miss distance and decreasing the called-for
acceleration, and is well suited to analytical attack. Such an analytical
approach was taken in the beam-rider study of reference 1. Here the miss
distance was minimized with a restriction on the available control motion.
This restriction was chosen so that the probability of the control surface
physically limiting is small and the system therefore operates essentially
as a linear one. This is the approach which will be adopted in the
remainder of this report. It should be noted in particular that other
types of limiting which might exist in the guidance system are not consid-
ered in the theoretical formulation of the problem. This is because it
is believed that acceleration limiting is predominant and that imposing
a suitable restriction on this quantity will satisfactorily reduce the
other types of limiting. The validity of this assumption will be treated
in a later section.

Adjoint equations.- The problem we wish to solve can now be stated in
terms of finding that control system transfer function, C*(s,t), which will
minimize the mean-square miss distance, €2(T), with a restriction on the
mean-square ensemble average of the called-for control motion, ®2(t5).
From physical reasoning, it 1s clear that to obtain an optimum system,
this mean-square control motion should be as large as possible at all
times throughout flight; that is, it should remain constant at the maximum
permissible value. Formulated in terms of the adjoint block diagram,
this means that we want to find the system which will do both of the
following:

4Strictly speaking infinite acceleration is called for only when the
noise spectrum is white (i.e., Ty = 0). However, since Ty 1s generally
quite small, the called-for acceleration is extremely large, essentially
infinite for practical purposes.
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1. When an impulse is introduced at point A at time T = O,
produce an output which is a minimum.

2., When an impulse is introduced at point 3B, produce an output
of a specified magnitude independent of the time at which the impulse

is introduced.

Mathematically this amounts to minimizing the quantity

e2(T) + pd%(t2) (16)
for all values of t,, where p 1is a Lagrengian multiplier.

The expressions for both the mean-squere error and the mean-square
control motion can now be written in terms of the unknown control system
c(r,t). These equations are shown in apperdix A to be:

Mean-square error

2 (t2) = f ) ({ I wh(w—-x,n)hN(T,f-xm}i
o] Q

00 2
-{U/\ [uO(T-X—Tl)—h(T-X,Tl)]hT(T,T-X)dX}-:)dﬁ (17

¢}

k k T
h(r,T1) = 73¥Z]NC(T,T1)dT ar - 7?'/ﬁ h‘g,Tl)L[7\C(T,§)dT dr ds
‘o

Mean-square control motion

e e .
82(t2) =[ <{[ g(T-x,Tl)hN(T,T-x)dx}
{fm[uoh-x-n)-gh-xn: )]hTu,T-x)dx}z}dT (19)

e}

g(T,Tl) = C(T Tl - ng/\ 5 Tl j?P T g dT at dE (20)
o]

(18)
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As can be seen in equations (17) and (18) the mean-square error is related
to the control system C(T,g) through the intermediate response h(T,Tl).
Similarly in (19) and (20), the mean-sguare control motion is related to
c(7,t) by means of g(r,T1). Thus, it is clear that the error and control
motion are related to the unknown control system C(T,g) by means of the
four eyuations above.

The optimization problem is now one of solving the above egua-
tions (17) through (20) for the optimum control system c(7,t) so as to
minimize the miss distance with the desired control motion restriction.
These equations are so formidable that exact minimization appears imprac-
tical., Even when the problem is simplified to minimizing miss distance
with a control motion restriction at the end of the attack only, no
solution has been found. As a consequence of the difficulties involved,
some approximate method must be found to synthesize the optimum control
system.

Approximate solution approach.- It will now be necessary Lo review
some oI the physical reasoning which plays an important part in the optimi-
zation of the homing system. To begin with, the desirability of the missile
following a CTB course has been emphasized previously. Such a course,
however, can never be followed in practice because of the noise and the
system time lags. Consequently, some rms miss is inevitable. When the
missile has unlimited acceleration capabilities, it should be able to do
the best possible Jjob in approximating the CTB course and the minimum miss
distance should result. This minimum has been shown in & previous section
to be identical for both the beam-rider and homing systems. However, it
is clear that any real missile with limited acceleration capabilities
cannot achieve this ultimate performance because the noise produces an
infinite called-for acceleration which the missile cannot achieve. Thus
the CTB course cannot be followed as closely as with unlimited acceleration
capability, and the minimum miss distance is increased. In this situation
the smallest miss distance can be obtained by including in the optimization
theory a restriction on the acceleration capability of the missile., By
this procedure, it was established in the case of the beam-rider study that
the miss distance is increased only a small amount and that the missile
still flies quite close to the CTB course. Actually, miss distance is
quite closely related to the relative displacements of the ends of the line
of sight from the CTB reference, that is, the quantity e which is Yp=Yum-
For the beam-rider system these quantities are directly related so that
minimizing miss distance is entirely equivalent to minimizing these line-
of-sight deviations from CTB. For the homing system, however, the same
equivalence is not valid. In this case the quantity to be minimized is
the miss distance, but because of the kinematic time-varying range it is
related in a complicated fashion to the deviations from CTB. Nevertheless,
it is clear that small miss distance inherently requires a course not far
from CTB; otherwise maneuvers of the target during the terminal phase could
not be adeguately corrected for by the missile and the miss distance would
necessarily be increased. As a result of these arguments we would naturally
expect that for the acceleration-limited homing system to achieve minimum
miss distance, it would have to fly close to a CTB course. Following such




a course does not appear to place any undue da2mands on the homing system.
We would expect that as long as the missile his the same acceleration
capability as in the beam=-rider system, the homing missile should be
capable of following the CTB course just as w:ll as the beam-rider missile,
and should therefore be able to obtain the sane miss distance performance.
Thus, as a good approximation it can be said that the performance of the
optimunm homing system with a realistic restri:tion on missile maneuver-
ability is identical to that of the optimum constant-coefficient system.
The verification of this approximation must be deferred to later sections
(see p. 29). By means of this approximation, “owever, it is now possible
to investigate the synthesis of the homing system.

The three reqguirements which the homing system must satisfy can now be
enumerated: (1) the miss distance performanc: should be the same as for
the constant-coefficient beam=-rider system, (2) the rms control motion
should remain constant throughout flight, and (3) the control system should
be a reasonable one, that is, one which can b2 readily mechanized without
being overly complicated.

Let us consider how each of these three requirements can be satisfied.
To satisfy the first requirement, that the miss distance performance be the
same as for the constant-coefficient or beam-cider guidance system, it is
clear from equation (17) that it is only necessary for the impulse response
of the adjoint system h(T) to be the same as y(7) which is the impulse
response for the optimum constant-coefficient beam-rider system. Then it
can be seen that the control system c(7,£) which gives the desired h(rT)
can be found by solving the integral equation (18). It has not been found
feasible to solve this eguation directly. Th: difficulty appears to be in
the manner of representing the control systems by a single impulse response
c(T,g). Since the impulse response of even a physically very simple time-
varying system may be quite complicated, we woiuld expect that the solution
for the optimum control system would be even nore unwieldy. In addition,
there 1s no assurance that the solution would satisfy the third require-
ment, that is, that the system be a simple anl reasonable one. Consequently,
1t has been necessary to find another represeitation.

A more suitable representation which has been found is based on split-
ting up the control system into several parts, each with its own impulse
response, Since control systems employing mu.tiplying elements are the
most common and easily constructed, it is des.rable to consider control
systems of this type. A simple form is one wiich consists of two parts,

a time-varying multiplying element and a non-:ime-varying transfer function.
The question arises as to where the multiplie: should be placed. The entire
control system can be visualized as a single ‘:omplicated filter constructed
of a number of elements, among which are the -adar at the input and a
control-positioning servo at the output. Pra:tically speaking, the multi-
plier cannot be located at the input of the sirstem because at least some
elements of the radar must precede i1t. Similirly, it is not practicable

to place the multiplier at the system output. Thus, the only reasonable
configuration for the real time control systeinr is as shown in the following
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sketch where the multiplier is designated as F(t) to indicate the time
variation. The adjoint diagram of the complete homing system would then
appear as in figure 7.

Radar and Servo and
Filtering Multiplier Filtering
VrA o)
s s RO F(t) Y1 (s) —

The above representation of the control system automatically satisfies
the third requirement that the system not be too complex. Furthermore,
as will now be shown, this representation of the control system enables
the first requirement to be satisfied, that is, the desired control system
to be synthesized so as to achieve the desired system impulse response.
An equation which replaces equation (18) can now be derived - one that
relates the response h(T) not to c(r,t) as in (18) but rather to the
control system components as it has been split up. For this purpose,
figure 7 for the adjoint homing system is redrawn. From this diagram, an

so(n) = 2w 2 e [ E
.
®——h(1’)
h(7) ] }_S“% v, (s) £+ - va(s) z

equation relating the homing system impulse response h(T), and the control
system components can be derived:

0 2 (oo 3] .
%L‘l(us)L{f(T) f Th(mo[ ff oy (%) ax dx}dxp (21)

o}

Here the symbol L. represents the usual Laplace transform operation.
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Multiplying this equation by 7 and taking the Laplace transform we get

Y- (G Yg(s)L{f(T) L'l[kaYlis_)} i

52

f(ﬂfTh(T-x)[ffkafl(x)dx dx]dx} (22)

Under certain conditions this equation can be solved; that is, for certain
time-varying functions f(7), this eguation cin be solved for the remainder
of the control system Y (s) and Yo(s). Thus, the desired impulse response
h(T1) and therefore the desired miss distance Jerformance can be achieved.
Since there are a great many solutions of equation (22), a whole class of
optimum time-varying homing systems can be generated, all of which have the
desired miss distance performance,

The remaining requirement, satisfying th: desired control-motion
restriction, can be achieved as follows. Of 1ill the homing systems which
are solutions of equation (22), it is clear thiat each system will have
di.fferent control moction requirements throughiut flight. Thus, from this
whole class of systems, the one or nmore havinz the desired restriction can
be chosen. It would be expected that when th: system with constant rms
control requirements throughout the flight is chosen, the magnitude of
rms control motion would be identical with that for the constant-coefficient
system.,

It is apparent that the success of the ajiproach outlined is dependent
on a suitable initial choice for the time-var/ing element f(7). The types
of time-varying elements which appear most promising are functions-of-range
multipliers such as: (1) range multiplication, (2) a power of range
multiplication, (3) exponential-type multipli:rs, or (4) combinations of
these types. Other types of elements such as a variable time-constant
filter do not appear as feasible in satisfyinz the three requirements for
the homing system. It should also be pointed out that the non-time-varying
control system can be regarded as a special cise of the above systems.

Example situation.- In the following sec:ions certain systems of
interest will be examined in detail in terms »f a varticular example
situation. This will be taken, for convenien:e of comparison, to be the
same as that of the beam-rider example used i1 reference 1 except that
idealized aerodynamics will be assumed here iistead of the specific form
of aerodynamics employed in reference 1.

The example to be used is based on a tail-chase situation; although
this attack may seem somewhat trivial for the homing problem it will be
shown later to be easily generalized to more interesting situations. The
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noise and target maneuvers are assumed to have spectral densities Oy
and ¢p as defined by equations (4) and (5), the specific numbers used
being considered typical of what would be expected in an attack against
a large bomber. The magnitudes of the bomber and missile velocities are
taken to be Vp = 880 ft/sec and Vy = 2640 ft/sec, respectively, which
gives a relative closing velocity magnitude of VR = 1760 ft/sec. The
ideal aerodynamics are represented by a control effectiveness constant,
1/Tg, of 0.4792 radian/sec, giving an over-all aerodynamic gain

kg = Vy/Tg, of 1265 ft/sec2 per radian.

For these conditions the optimum over-all transfer function Yo(s)
has been determined using the method of reference 1 so as to restrict

the rms control motion,'JgEl to an arbitrary but typical value of
0.128 radian.’ Because we are assuming idealized aerodynamics, this is
equivalent to restricting the rms acceleration to 5 g's. The solution
for the optimum transfer function is found to be of the form:

2 2
Ty & +28Tys+l
Yo(s) = — —= (23)
(Tgs+1) (T 7s%+2¢; Ty s+1) (T " s 5420y Tys+1)

where the constants are all more or less complicated funtions of the
problem parameters. For the particular values of the parameters given
above, there is obtained

1.2828241. TThs+1 (24)

Y. .(s) =
(0.6868s+1) (0.490s%4+0. T1lhs+1) (0.0694s%1+0.37265+1)

o}

The impulse response of the system represented by this particular
Y, 1s plotted in figure 8 for reference purposes. It is of interest
to note that this response approaches zero rather rapidly after a time
interval of a few seconds. Thus, only these last few seconds of the
attack need be considered in the analysis.

The miss distance performance for this constant-coefficient case
has been found to be 21.4 feet, which represents the optimum performance
for the given situation. Since the noise magnitude i1s one of the most
important guantities and most subject to wide variations, the minimum
miss distance performance for varying amounts of noise is given for the
beam rider in figure 5 by the middle solid curve, The operating point
for the example case is shown. From the discussion of the previous
sections, the minimum miss distance performance of all optimum time-
varying homing systems is indicated by the dotted curve.

5The 0.128 radian restriction implies that the actual limits on
control motion are enough greater than this value that limiting will occur
infrequently enough for the system operation to be essentially linear.
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Proportional Navigat_.on

Constant-coefficient or time-invariant :ontrol systems are of partic-
ular interest in homing navigation because o7 their simplicity and wide-
spread use. Proportional navigation control systems are principal examples.
However, proportional navigation systems are not only time invariant but
also have a particular form, namely that the steady-state relationship
between Ay and ;d is a constant. (This is equivalent to a factorable
s 1in the numerator of the control system trinsfer function C(s).) In
the analysis which follows only the conditiol of time invariance will be
imposed on the control system, with no restriction on the particular form.
The synthesis procedure will then prescribe the optimum form of control,
and it will be seen that this form is precis=ly that of proportional
navigation. The merits of this type control will then be examined.

From the discussion of the previous section it is clear that the
optimum homing system should have about the same performance as the
optimum beam-rider system. However, with a onstant-coefficient control
system it is not expected that both the optinum miss distance and control
motion characteristics can be achieved simultaneously. For this reason
we defer considerations of control motion rejulrements for the moment
and simply assume that the system is linear. Then in order to achieve
the minimum miss distance, we desire to find the optimum constant-
coefficient control system C(s) as shown in figure 6. This should be
done so as to make the homing system impulse response h(T), in equa-
tions (17) and (18), identical with the optinum beam rider, or constant-
coefficient, impulse response yo(T), which is the inverse transform of
(23). It is clear that in figure 7 a time-iivariant control system is
represented by f(1) = 1. Now the optimum control system can be found
by solving egquation (22). If f£(7) = 1 and 1(7) = y,(7) are substituted

in equation (22),
- E&ﬁfl::Yé(s)L{i;l[EEQ;i;}"

ds
I Tyovr—x)[ [T e dx}dx} (25)

@)

Carrying out these operations reduces this ejuation to

d¥o(s)  ka¥y(s)Y¥o(s)
ds - 52

[L-Yo(s)] (26)

where, again, Yo(s) is the optimum beam-rider transfer function. Now
from a comparison of figures 6 and T, it is czlear that the time-invariant
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control system Cqo(s) = Yy(s)Y¥2(s). Meking this substitution in (26)
we can then solve for the control system:
s2 d
—_—— |Y
K, as [Yo(s)]

Co(s) = (27)
o 1-Y5(s)

It is interesting to examine the general form for Co(s). By substituting
equation (23) in (27) it is found that

(28)

where A(s) and B(s) are polynomials ending with unity as the last term.
For the particular example situation used in this report, evaluation of
equation (28) gives

5(3.525+1)(0.24352+0.8085+1) (0.1815240.678s+1)
(a.ss+1)(o.u9s2+o.7z7s+1)(0.687s+1)(0.069us2+o.37ps+1)(o.032252+0.25us+1)

Cols) = 0.00158

(29)

The miss distance performance with this control system is, of course, the
same as the beam-rider system, or 21.4 feet.

The interesting thing to be noted about Co(s) is that its form is
that of a proportional navigation control system; that is, the transfer
function from Xg input to id output contains (1) a factorable s wvhich
can be regarded as representing the differentiation of Ay performed
by the missile radar, (2) a number of lead and lag terms, and (3) a constant
gain. The form of proportional navigation is obtained here without
imposing any requirement other than that the control system be time
invariant. It will be noted that the considerations involved here are
quite different from those which are usually considered in homing studies.
However, it snould not be concluded on this basis that proportional
navigation is opbtimum since acceleration requirements have not yet been
considered.

It should be further noted that the method given here will always
result in a guidance system obeying the proportional navigation law.
This is because the constant-coefficient transfer function, Y, has
coefficients which are not all independent. It can be shown that in
equation (23

26, T, = TB + 2§7T7 + 20,y
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Physically, this means that the open-loop transfer function associated
with Y, always contains a 1/s2 factor which enables the missile to
follow an accelerating target with a constant steady-state lag. As a
consequence, in (27) the factor [dY,(s)/ds]/.1-Yo(s)] will have a factor-
able s in its denominator, and therefore th: homing control system
derived from such Yg's will automatically oce of the proportional
navigation type. Furthermore, this type of :control was also obtained in
the unrestricted homing missile problem, which was treated completely
independently of the beam-rider problem. Thuis, it is clear that the
requirement of proportional navigation is deoendent ultimately on the
nature of the target maneuver; that 1s, the fact that the target executes
a switching acceleration maneuver.

Now we will consider the magnitude of tie acceleration or, equiva-
lently, the control motions, demanded of the missile during its flight
for the proportional navigation control system Jjust derived. This
consideration is important since the 21.L4-foot miss distance will be
achieved only if the assumption of no limitiig is not violated. The
control motion requirements can be obtained nost conveniently from the
computer. With the Cg(s) of equation (29) inserted in figure 6, measure-
ments were made using the procedures outlinel previously. Results of
such measurements are given in figure 9 wher:z the rms & 1is plotted as
a function of range, or time to go. This curve might be called the &
characteristic of the system. Any point on the curve may be interpreted
as the root-mean-square ensemble average of control motion at that
particular range. The desired amount of control motion, which is identical
to the beam-rider value, is alsc shown in fizure 9 for comparison.

Examination of figure 9 reveals the following information: (1) The
mean-square control motion 1s finite at all ranges, in contrast to what
would be found in the unrestricted case, where the © characteristic is
infinite at all ranges. (2) The desired restriction on control motion

(i.e., JEE': 0.128 radian) has not been achi:ved, since less than the
design control motion is used at intermediat: and long ranges while
considerably more than the desired amount of control motion is called for
at short ranges. In the actual operation of such a system it can be seen
that the control motion would limit at the siort ranges. Conseguently,
the minimum miss distance indicated at the ooerating point in figure 5
would not be achieved.

A compensating effect in the utilizatioi1 of control motions is evident
here. This arises from the fact that there (s associated with the pre-
scribed miss distance performance a certain aiverage effort which the
system must expend. The beam rider operates in the most efficient manner,
using maximum available control motion uniformly during its flight. But
the proportional navigation system utilizes Less than the required effort
for part of the time and in order to compensite must try to make up the
deficiency by calling for more than the averige effort near the end of
flight. 1In order to make more efficient use of the control motion capa-
bilities in the homing system, 1t i1s apparent that a time-varying control
system 1s desired.
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Range Multiplication Control

In the previous section 1t has been illustrated that a time-varying
control system is required in order to satisfy the desired control
restriction throughout flight. There are several forms of time-varying
control which appear capable of satisfying this restriction as has been
mentioned. However, since range multiplication is of wide interest and
since we will see that it provides the approximate desired control
restriction, the other forms of control previously suggested will not
be examined here. It is important to note that the use of range multi-
plication type control does not automatically meke the system optimum.
The multiplier is only a small part of the whole system and the remainder
of the system must be chosen to achieve the design objectives.

The complete range multiplication system is represented in figure 7
if we let £(71) = 7. In this case the two filters Y,(s) and Yo(s) must
be found so as to achieve minimum miss distance. To do this acceleration
requirements are deferred for the moment, assuming the system to be linear,
and the filters are chosen so as to give an impulse response h(r) identical
with the optimum impulse response of the constant-coefficient system
¥o(T). The solution can be obtained from equation (22). We have

ds 52

TnyO(T-X)L/]kayl(x)dx dx]dx} (30)

e}

- do(s) Yg(S)L{TL—ll:}‘{—a—Yl—(—Sl} -

Carrylng out these operations, we get

ay d | kg¥ ) kg Yo(s)Y1(s)
- O£S) =Y (S) - _a l(s 2.0 - 1\S
or
d¥,(s) Yi(s)[1-Y.(s)]
————Os = kaYQ(S)—'—d:S { l( ) . O( ) } (31)

Now there are a great meny control systems, that is, combinations of
Y,(s) and Yz(s) which will satisfy equation (31). A unique solution is
possible by choosing either Y,(s) or Yo(s) and determining the other.
However, if the latter choice is made, it is clear that expression (31)
will be a differential equation in Y,(s), the solution of which involves
unusual functions for a control system - functions which at best would
have to be approximated in some manner. On the other hand if Y (s) is
chosen, the solution for Ys(s) is readily obtained. From relation (31),
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- : (52)
di{iff;—(—) [1—&o(s)]}

The choice for the servo Y;(s) is not completely arbitrary. For
example, if the servo is chosen to be quite fast (ideally unity) and no
filtering is provided in the amplifying sy:tem driving the servo, the
required Yo(s), radar and associated filtering, is unstable. The
considerations involved in choosing Y,(s) so as to result in a feasible
system are outlined in appendix B. For the example attack situation, the
simplest practical form for Y,(s) is found to te

Yo(s)

) = bs+l  1.0fs+l

nis) = o7 = 5o

(33)

Application of equation (32) using eguatiors (24) and (33) then gives the
required radar and associated filtering, Y., as

Y5(s) = 0.00338 5(2.20s+1) (0

2. 435240.808541) (0.1815%+0.678s+1)
(2.53s+1) (0. 4465241205 2

05+1) (0.1125240. 4765+1) (0.019%5240. 1965 +1)

.2
ol
.

(34)

The form of this transfer function is particularly interesting. It
is seen here that the radar and filtering, Y-, contains a factorable s
in the numerator which can be considered tc correspond to the differen-
tiation performed by the radar. In this respect the situation is similar
to that of the proportional navigation sysiem discussed earlier. The
method used here will always produce a Yo with a factorable s. It can
be shown, again, from the equations presenied in appendix B that this
result is due ultimately to the fact that the target executes a switching
acceleration maneuver.

Let us now examine the performance of this system. First of all it
is clear that the miss distance is identicel with that for the optimum
constant-coefficient system (beam-rider). This value, as indicated by
the operating point in figure 5, is 21.4 feet. As for the control motion
requirements figure 9 illustrates the © characteristic for the range
multiplication system. The difference betieen this curve and that of
the proportional navigation system is striling. It can be seen that the
demands on the missile are now essentially uniform throughout flight, and
at the desired design level which is also Zndicated in figure 9. The
control curve has not only been flattened tut its curvature has actually
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been reversed, so that there is a little too much restriction at short
ranges and not quite enough at the intermediate and long ranges. The
compensating effect of control motion at different times during the flight
is again evident here Jjust as in the proportional navigation case. The
ideal system would be one in which the control motion requirements are
constant at the design value throughout the flight. Thus it is clear
that the range multiplier system is not quite an optimum form of control
and that possibly one of the other multiplying functions would be better.
However, the range multiplier control is so close to optimum that little
improvement could be expected. This is because during the portion of
flight where the ©& characteristic exceeds the design value, it does so
only slightly. The amount of limiting would be so small that the assump-
tion of linearity would still be valid and the expected miss distance
would be achieved.

It is possible, if so desired, to modify the range multiplier slightly
to obtain a perfectly flat & characteristic as given by the dotted curve
in figure 9. BSuch a modification is shown in figure 10, and it is seen
that this altered multiplier differs only slightly from the original.

The miss distance performance for the modified system is unaltered as a
consequence of the compensating control motion effect described earlier.

It should be pointed out that in practice it is not necessary to
adhere to the range multiplication scheme at long ranges. The reason is
that the operation of the system at times long before the collision point
has little effect on miss distance even when the controls are used
inefficiently. This is because, as discussed earlier and indicated in
figure 8, the impulse response dies out rather rapidly so that inputs
which occur before the collision point by an amount greater than thre
duration of the impulse response have no effect on the miss. Thus the
® characteristic need only be flat for the last few seconds of flight
and may fall off at longer ranges.

The results obtained for this system indicate very clearly the
following points: (1) the requirement for an optimum system, that
the rms control motion be of a specified constant magnitude at all
ranges, is satisfied; (2) the requirement for an optimum system, that
the line-of-sight rotation throughout flight be small, 1s satisfied;
although small line-of-gight rotations have been merely an assumption
throughout the analysis, verification of this assumption will be given
in the next section; and (3) the miss distance is not much greater than
the absolute minimum obtainable with unlimited maneuverability. Thus
it is apparent that the system synthesized represents a good approximation
to the homing guidance optimum, and the principal objectives of
optimization have been achieved.

It is now possible to show that the analogy between the beam-rider
and homing problems, already established for the unrestricted case extends
equally well to the restricted case. We have already concluded (p. 19)
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that we would expect the same over-all performance from these two systems
when control motion limitations are present. Now in this section we can
see the proof of this, the two systems having not only the same miss
distance but alsc the same maneuverability requirements throughout the
flight. This is illustrated in figure 9, where the control requirements
for the beam-rider system are shown for comparison with those of the
homing system. As a result of this equivalence between systems, we may
utilize certain miss distance studies made previously for the beam-rider
system. For example, the results of reference 2 may be used to relate
minimum miss distance to all of the factors which place an inherent
limitation on its minimum value. Such factors are the target acceleration
and average switching rate of acceleration, radar noise magnitude, and
missile acceleration capabilities. This relationship is as follows:

= Nag .3k 7.9k
2 = 9.20 .02 2 4 ==
€ 9 + 5 " + (32 2)2 ap® + =

(35)

A discussion of these effects 1s given in reference 2.
ADDITIONAL CONSIDERA'!TONS

It is desirable at this point to discuiis certain aspects of the
problem not previously considered. This discussion 1s divided into several
sections, in the first of which the initial assumptions made in the
analysis will be considered. In the second section, the effect of blind
range which was neglected in the original satement of the problem is
evaluated. The last section contains a discussion on the effect of attack
situations other than the tail chase used in the example case.

Initial Assumptions

It will be recalled that the assumption which has been used in order
to linearize the homing system geometry is —hat the deviations of the
missile flight path from a straight-line CTB course are small., Thus the
perturbation angles, Ag (deviation in the a)parent line-of-sight angle)
and 74 (deviation in the missile heading f-'om the straight-line CTB

course) are assumed small. The validity of this assumption has been
verified by actual measurement on the analo;; computer. It must be noted,
however, that N varies with range, being very small at the larger
ranges and increasing to a theoretically ininite value at zero range.
Nevertheless, the rms A5 1is found to be sufficiently small over almost
all of the flight, the small angle assumption thus being violated only at
such short ranges that the effect on miss d:..stance is negligible.
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Another assumption which has been made is that control deflection is
the most critical saturating quantity, in the sense that a restriction
applied to this guantity would automatically prevent limiting of other
gquantities of interest. Thus the system is assumed to be linear, and
computer measurements have verified the reasonableness of this assumption.
Of particular interest is the called-for rate of control motion because
it 1s related to the servo power. The 1ms control motion rate was found
to be about 2 radians/sec; since the rate limit of present missile servos
1s several times this value, rate limiting is certainly inconsequential.
Similarly, the called-for voltage levels in various parts of the control
system were measured and found to be easily attainable.

Blind Range

Since we have assumed in this report that the blind range of the radar
is zero, the results are, strictly speaking, valid only for semiactive
radars. (Most radars are of this type.) For active radars, however, this
assumption is only an spproximation. To evaluate the effects of neglecting
blind range, measurements of miss distance for the range multiplication
system were made by means of the analog computer. The blind range was
simulated by the opening of a switch at the appropriate location in the
radar. The results are presented in figure 11l. TFor a representative
blind range figure of 300 feet it can be seen that blind range effects are
nearly negligible. Even for larger values of blind range miss distance
increases only a few feet. Since the miss distance of a system designed
specifically for a large blind range would also increase from the zero
blind range case, it is concluded that the zero blind renge optimum system
is essentially optimum even for a fairly large blind range.

Other Attack Situations

Since the optimization of the homing system given in this report has
been illustrated by means of a particular example situation, it is of
considerable interest to examine the application to other attack situations.

In the first place, the tall chase which has been used here is quite
common with present-day missiles. This is because so many considerations
enter into the problem that the possible attack aspects are severely
limited to something approximating the tail chase. From geometrical
considerations it can be seen that the optimum system is particularly
insensitive to changes in attack aspect from the true tail chase. FEven
as much as 30° off the tail is essentlially the same as a tail chase.

In the second place, if the exact solution is desired for some attack
aspect other than the tail chase it can be readily obtained by the methods
already presented; that is, (1) specify the problem parameters - attack



aspect, target acceleration and noise spectrum for that aspect, and the
missile-to-target speed ratio; (2) compute the CTB course and determine
the components of available missile and target acceleration perpendicular
to the line of sight; (3) determine the equivalent optimum constant-
coefficient (beam-rider) system, Yo(s); and (4) determine the optimum
range-multiplication control system for the homing missile. It will be
seen that different numerical values of the parameters of the optimum
control system result for almost every diffzrent situation. Fortunately,
however, 1t is found that the parameters of the optimum control system are
not especially sensitive to changes in the problem parameters. It is for
this reason that designing the system for some sort of average of the
situations expected to be encountered would result in near optimum perform-
ance for the vhole range of conditions without altering the system.

The third comment regarding attack asrzct is that any given solution
applies exactly to many different situations 1f the problem parameters are
reinterpreted. In other words, given a sclution, one can work backward
and find a whole series of problems for whizh the given solution is wvalid.
To illustrate this idea for the previous tall-chase solution, let us
consider the attack shown in the following sketch. The attack is nearly

2g

ap = 13
60°

6.12g rms

84.7°

from the beam, and the missile-to-target srzed advantage is 1.5 to 1. If
the missile speed, Vy, is assumed to be 264D ft/sec as in the report
example, the target speed, Vp, would be 1760 ft/sec. It can be seen that
to have the same ap for which the solutioa is valild (i.e., *lg), the
target must now be assumed to maneuver with *2g acceleration. Similarly
the missile must have a 6.12g rms capability in order that the component
of acceleration perpendicular to the line of sight will be 5g rms as in
the example solution. On the other hand, if the missile has only a 5g
capability, the same solution holds if all quantities are scaled down
appropriately (i.e., target acceleration, *1.63 g's; magnitude of noise
spectrum, N, 10.0 ft2/radian/sec; and miss distance, 17.5 ft),
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CONCLUDING REMARKS

The synthesis method presented in this report is an approximate
method - one that has been shown to yileld a homing system with near
optimum performance. As is typical of such methods, there are a number
of ways to realize the near-optimum system. One of these, utilizing
range multiplication between the radar and control actuator servo, has
been given. Possibly other types of multipliers might prove to have
advantages. It is also possible that with further work an exact solution
could be found. Besides these possibilities, there are other factors
which might influence the specific system design. For example, in situa-
tions where launching errors are important it may be desirable to make
modifications in order to reduce launching error in a minimum time. In
other situations, modifications may be necessary because of regquirements
of simplicity on certain parts of the system or the necessity of using
certain fixed and unalterable elements in the system. Other alterations
would be required in order to supply artificial damping to the missile.
Since there are many ways in which optimum performance can be achieved,
it should be possible to include such requirements without sacrificing
the performance. However, an investigation of such factors is beyond
the scope of this report.

It seems appropriate to point out that the example given in this
report is for a specific attack situation with particular numerical
constants. Thus, there is no indication of what effect changes in the
problem parameters will have on the over-all system performance. For
example one might be interested in the effect of target acceleration and
noise on the minimum obtainable miss distance, or in how far to go in
building greater maneuverability into the missile. It would appear such
effects could only be evaluated by carrying through the procedure for
each attack situation. Fortunately, however, the results of reference 2
can be used for this purpose because of the equivalence between beam rider
and homing guidance.

One of the significant by-products of this study has been the develop-
ment of the equivalence between the beam-rider and homing guidance problems.
As we have seen, both systems attempt to solve the same basic problem
although in a different fashion. There are other - apparently different -
systems which attempt to solve the same problem such as the automatic
interceptor, or antimissile missiles. These problems might well be cast
in a similar mold. In fact generalization to include wide classes of
weapons systems would be a valuable objective of future work.

The most urgent extension of the present work would appear to be to
the critical high-altitude problem. Under conditions of higher speeds
and altitudes of potential targets, the acceleration advantage of the
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missile over the target is lost, and the present theory is inadequate.
The reason is that the problem becomes a nonlinear one. Extensions
of the theory should be made to nonlinear aspects of the problem so as
to include such conditions.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Nov. 13, .958
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APPENDIX A

DETERMINATION OF THE OPTIMUM HOMING CONTROL SYSTEM

No Restrictions

In this section optimization of the unrestricted homing guidance
system will be considered. Reference should be made to the text in the
report for a discussion of the problem. As a starting point here, it
will be desirable to redraw figure 4 in the following form:

E
U.O(T"Tl) + 1 h(’T,Tl) NT
- W(T,g) = - hN -
.o Eps
- hT "

In response to the impulse introduced into the input, the output consists
of two parts shown above as ENf(T,Tl) and ETf(T,Tl). These guantities
are the filtered noise and target érror signals. Since they are uncorre-
lated, the error is composed of only these two parts, one due to noise and
the other due to target maneuver. If we identify each of the signals

Ens and Eps with the h in equation (8), the expression for mean-square
error can be seen to be:

(D) =f°°[ENf2(T,n) + Bre2(,71)lar (A1)
@]

The assumptions involved in writing this expression are given in the text
proper. From the above figure it can be seen that each of the output
signals is given by

Bye(7,m) f B(e, e )ny (T, &) ds (42)

-00

Bre(r, 1) =fT[uo(é-n)—h(é,n)]hT(T,é)dﬁ (43)
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By changing to a new variable x = 1=, we get

]

ENf(T;Tl) =f h(T‘X’Tl)hN(T;T"X)dX (AL})
o]

Epe(7,T1) =f [ug(T=x-71)-h(1-x,71) Inp (7, T-x)dx
o)

(43)

low equation (Al) can be written as

2
S ——

. 2
{f [UO(T"X-T:L)-h(T'X;Tl)]hT(T,T-X)d-X} )dT (46)
O

Equation (A6) is a general form which can alsc be used when control-motion
restriction is considered; the only difference would be a reinterpretation
of the symbols h and €. In the present case, however, we are concerned
only with minimizing miss distance which is tke value of error at time T.
Also the noise and target motion are assumed to be stationary. Thus the

miss distance becomes
_ZT{!OOh(T-x)hN(y)dx}g +
o 2
{[ [uo('r—x)-h('r-x)]hqj(x)dx}> ar (A7)

By expanding (A7), we obtain

fff {hN Jan()n(r-x)n(r-y) + hp()hp(y)[uo(T-x)us(7-y) -

Uo(T=-x)h(7-y) - ug(7-y)h(7-x) + h(r-x)a(r-y) ]} dx dy dr (A8)
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The particular h which minimizes the miss distance can now be found by
variational methods. One considers hg(7) to be the desired optimum
h(r), and introduces a variation h;(7); that is, h(r) = ho(7) + nhy(T),
where 1 1s a real parameter. After substitution of this relationship
in equation (A8), the necessary condition for a minimum of (A8) is that
%ig OBGZ(T)/én = 0. By carrying out this calculation, it can be shown

that

JF u/\ /* {£N(X)hN(y)[hl(T‘X)ho(T-y) + hy (T-y)hg(T-x)] -
o o 0
hr(x)hp(y) [up(T=)hy (7-y) + uo(7-¥y)hy(T-%x) - ho(T-y)hy(7-x) -

ho(T'X)hl(T-Y)l} dx dy dt = 0

(A9)
From the symmetry in the above expression, (A9) can be reduced to

o

f hl(T'X)[ [Oi[th(X)hN(Y)ho(T‘Y)dy dx -

o
@)

{ozmm(x)hrp(y)uo(my)dy dx + foi[th(x)hT(y)ho(T_y)dy dXJdT _ 0

o O

(A10)

Since hq(7-x) is arbitrary and is zero for T < X, the minimizing
condition 1is

f f gy () gy (3o (7-3) = e ()R (3)vo (T-¥) + hp(x)ap(y)ho(T=y) Jay dx
(@] O

= m(7-x)

(A11)

vhere m(7-x) = 0 for T > x. The optimum, h,, can be found by taking
the Laplace transformation of equation (All) to give



f [ [ {hN(X)hN(y)ho[(T"x) + %=y = hp(x)hp{y)upl (1-x) + x-y] +
o 0 X

ho(x)hp(y)hol (T-x) + X—y]}-eSXe—Sye—S[(r_X)+X—y]dy dx d(T-x) = M(s)

(A12)

where M(s) has no poles in the left half-plaie. Now by interchanging
the order of integration one can reduce equation (A12) to the following:

(s = [ Coe e[ e Vay [ hol (rorxeyie LTI (g )
o (o) f6)

f hT(X)eSXde h‘r(b’)e_sydy/ﬂm”o[(T-X)+X-y]ens[(T-X)+X_y]d[(¢-x)+x—y] +
Q 0 \'o

J/‘\ hT(X)eSXd{/‘\ hT(Y)e-Sde ho[ (T-X)+x—y e_s[ (T-X)+X-—y]d[ (T-X)+X—y]

o o
(A13)
Thus
M(s) = Hy(-s)Hy(s)Ho(s) - Hp(-s)Hp(s) + Hp(-s)Hp(s)Hg(s)
(ALL)
Since Hy(-s)Hy(s) = oy(s) and Hp(-s)Hp(s) = Ip(s),
M(s) = ay(s)Ho(s) = ap(s) + op(s)Hy(s) (ALS)
This equation is the transform of the Wiener-{opf eguation and the
solution (e.g., see ref. 4) is
] e
Ho(w) = +f e Mtf S Ge dt (A16)
2nd () 4 | o o (1)
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where

O = ¢+ Oy = 0T

T
The functions o1 and ¢~ are, of course, the factors of ¢ with poles
and zeros in the upper and lower half-planes, respectively.

It is nov possible to determine the control system w(s,t) so as to
achieve the desired impulse response hO(T) Just found. Redrawing the
figure at the beginning of the appendix A as

Rl | e L
+
hO(T)Tl)
hO(T;Tl) Wo(T;g) ;]I___

1t can be seen that the output response hg(r,T;) is related to the control
system wq(T,E) by the integral equation

T

hO(T}Tl) = K‘D—('%i]i - %_'_‘f Wo(Tyé)ho(g)Tl)dé (Al'?)

(¢}

As in preceding paragraphs we may let Ty = 0O to obtain

o(7) = wo(r) -fTwO(T,mho(g)dg

e}

If we were concerned with the analysis problem (i.e., the determination

of the output h(r) for a given control system w(T,t)), the standard
methods of integral eguation theory would be applicable. Here, however,

we are interested in the synthesis problem - the synthesis of wo(T,8) to
achieve a desired output he(7). It has not been found feasible to solve
this equation directly except in the special case when the control system
is non-time varying. The reason seems to be related +o the mode repre-
senting the control system. Even time-varying systems which are physically
simple are gquite complicated to represent in the form of an impulse response.
Synthesizing the control system by solving equation (ALl7) seems even more
difficult. Nevertheless, & method which exploits simpler representations
of the control system will be presented in the text. Tt will be seen

from the discussion there that there are a great many solutions of

equation (Al7). These are of interest primarily when the control restric-
tion problem is considered. For present purposes, let us consider only

the simplest of these control systems - one with constant coefficients.
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Then equation (Al7) can be written as

.
(1) = o) = [ ig(r-t)g(e)as (1)

e}

This eguation is a special Volterra integral equation of the second kind,
and can be solved by taking the Laplace transform of equation (A18) to
obtain

(A19)

With Control Motion Restriction

In order Lo minimize the mean-square eryor with a restriction on
control motion, it is necessary to express tlese guantities in terms of
the unknown control system. TFor this purpose, as explained in the text,
the control system must be represented as shcwn in figure 6. TNote that
we are now concerned with the control system c(T,£), which does not
include the aerodynamics, rather than w(T,t, as in the preceding
discussion. From a comparison of figures k4 end 6 it is clear that these
responses are related as follows

w(T,8) =ﬂkac(T,g)cT ar (A20)

where the constants of integration will be arsumed zero.
From figure 6 two eguations for miss distance can be written. In
fact, the first of these equations is identical with (A6). The second,

an integral equation, is obtained from (AL7) by eliminating w(T,E) by
means of (A20). For mean-sguare error:

E(ta) =fm<{ fwh(T-X;Tl)hN(T,"-X)dX}E +

{f [uo(T"X‘Tl)‘h(T‘X,T:.)]hT(T,T—x)dx}> ar
° (221)
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n(r,r1) = }%ﬁc(v,Tl)dT ar - }{Ta\/‘Th(é,Tl){iM/]‘C(T,g)dT dT] at
o

(A22)

Two similar equations for the mean-square control motion may also
be written in terms of the control system c(7,£). The derivation of
the first of these equations would follow along the same lines as for
(26). However, the error e should be replaced by & and the response
n(r,71) by its corresponding response g(t,71,). The response g(r,71)
represents, of course, the output of the homing system adjoint of
Tigure 6. Thus, the first equation is given by (A23) below. TFor the
second eguation, we can redraw figure 6 as follows

Uo(T=71)

—— C(T,&)

Al

dp_" g(T}Tl)

|W
of @

g(T)Tl)
———]

b

c(r,8)

W

From this sketch the response g(v,7,) and the control system c(T1,t)
can be seen to be related by the expression given in (A24). For mean-
sguare control motion:

52(t2) :foo<{fwg(T-X,Tl)hN(T,T-X)dXF +
O e}

{foo[uo(T-x—Tl)-g(’r-x,Tl)]hT(T,T-x)dx}2> ar  (423)

T
(i)

] |
strom) = Ll e gt | [Tetrpararks 2
O



APPENDIX B

DETERMINATION OF THE OPTIMUM RANGE MUI ITPLICATION HOMING

CONTROL SYSTEM WITH CONTROL MOTICN RESTRICTION

It will be the purpose of this appendix to indicate the factors which
govern the design of the control system. As pointed out in the text, the
most feasible design is obtained by expressing Yg(s), the radar and
filtering, in terms of Yl(s), the servo and filtering. The solution has
been shown in equation (32) to be

Ly (s)
vo(s) = ds _° (B1)

£ ]}

By expanding (Bl) we obtain

Ya(s) = - - (B2)
av,(s) _ 2Yi(s) 1L-Yo(s) J - s
|_ ds 5 } [dYo(g)/ds fals)

Now we can represent Y,(s) as C(s)/D(s). Also -[dY¥,(s)/ds]/[1-Yy(s)]

can be represented by the form given in equation (28) (i.e., 2A(s)/sB(s)).
Note that A(s), B(s), C(s), and D(s) are ascumed to be polynomials which
end with unity as the last term. With these substitutions equation (B2)
becomes

s2D2(s) £ (s)

_ B(s) {D(S) dcéz) - ¢(s) éEéilJ + B(s)C(s)D(s) - C(s)A(s)D(s)

(B3)
Now if we can take the simplest case of Y,(s) = 1, (B3) reduces to

R YO
w200) = .
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For the specific A(s) and B(s) applicable to the example attack situation
(see egs. (28) and (29)) it can be shown that the denominator polynomial
Y> has some negative coefficients. Thus an unstable Y- would be required.

The next simplest case is that for which Y;(s) = 1/D(s) where
D(s) = as+l. Eguation (B3) then reduces to

e[ s2D2(s)A(s) } (55)

Y2l) = T ()] + 2B A(E)]

This equation would appear to be satisfactory. In the first place although
the same factor B(s)-A(s) occurs as in the previous case, Yo(s) will be
stable here providing the time constant of the servo, a, is large enough.
Secondly, it will be noted that only one factorable s would occur in the
numerator and would represent the differentiation performed by the radar.
Thus this Yx(s) would appear to be satisfactory. However, it is found
that another consideration - the signal/noise ratio at the radar output =-
would appear to become a critical factor with this system. For this reason
no further consideration will be given to this system. Furthermore, the
design objectives can be accomplished in another way.

The next case to be considered is one in which Y,(s) = bs+l/as+l.
It is easy to show that the general form of Yo(s) will be

2
YE(S) - k—_‘l_ S(CL'?S +(1658 + see + l) (B6)
(Bgs® + Bgs® + ... + 1)

where k., 1s a constant. The high order of this system can be reduced

by properly choosing the numerical values of Yl(s). From (B3) it is seen
that if D(s) is chosen to be a factor of B(s), that is, B(s) = D(s) By(s),
the order of Yo(s) in equation (B6) would be reduced by one in both
numerator and denominator. Further, C(s) can be chosen so that a factor

of

-5 [D(s) é%éﬁl - C(s) égéilJ + C(s)D(s)

is the same as a factor of A(s). That is

- 2 LD(S) ac(s) _ ¢(s) d—’i(f_)J + C(s)D(s) = a(s)F(s)

ds ds

and A(s) = A;(s)F(s). The order of Yo(s) is reduced again by one. The
result of both these reductions is to give a Yz(s) of the form



e (B7)
S NAaS T b s e

where ko 1is a constant. Following this xrocedure in numerical terms,
a sultable Y;(s) is found to be

Y. (s) = bs + L _ 1.05 + 1
as + 1 2.9s + 1

(B8)

and the accompanying Yo(s) is

Yo(s) = 0.00358 5(2.50541) (0.243524+0.8085+1) (0.181524+0.678s+1)
= . b
. (2.935+1) (0. hL65%41.205+1) (0. 1105740, 5765+1) (0.019552+0.1965+1)

(B9)
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